Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Costas Tsouris
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Andrew Sutton
- Michelle Kidder
- Radu Custelcean
- Ying Yang
- Zhili Feng
- Alex Plotkowski
- Brian Post
- Edgar Lara-Curzio
- Gyoung Gug Jang
- Jian Chen
- Jun Qu
- Rangasayee Kannan
- Ryan Dehoff
- Sudarsanam Babu
- Yong Chae Lim
- Adam Willoughby
- Alexander I Wiechert
- Alice Perrin
- Blane Fillingim
- Bruce A Pint
- Christopher Ledford
- Corson Cramer
- David S Parker
- Eric Wolfe
- Gs Jung
- James A Haynes
- Lauren Heinrich
- Meghan Lamm
- Michael Cordon
- Michael Kirka
- Rishi Pillai
- Rob Moore II
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Wei Zhang
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Adam Stevens
- Ajibola Lawal
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Benjamin Lawrie
- Benjamin Manard
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Brian Sales
- Bryan Lim
- Canhai Lai
- Charles F Weber
- Charles Hawkins
- Chengyun Hua
- Christopher Fancher
- Dali Wang
- David J Mitchell
- Dean T Pierce
- Dhruba Deka
- Ethan Self
- Frederic Vautard
- Gabor Halasz
- Gabriel Veith
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Hsin Wang
- James Klett
- James Parks II
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jiaqiang Yan
- Jiheon Jun
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Marie Romedenne
- Marm Dixit
- Matthew Brahlek
- Matthew S Chambers
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Mike Zach
- Mina Yoon
- Nancy Dudney
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Peter Wang
- Petro Maksymovych
- Priyanshi Agrawal
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sreshtha Sinha Majumdar
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Vandana Rallabandi
- Venugopal K Varma
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yeonshil Park
- Yiyu Wang
- Yukinori Yamamoto

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

Sugars (glucose and xylose) can be converted into dioxolanes which phase separate from water. These dioxolanes can be heterolytically cleaved which acts as a controlled dehydration reaction which results in ring closing of the subsequent structure to furans such as 5-hydr

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The hybrid powder-encapsulated solvent over comes carbon capture challenges by providing a solution for easy handling of a non-toxic solid that is non-volatile and stable upon alternative energy regeneration methods.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

This technology allows for the utilization of butanediol isomers to form a range of C4 oxygenated compounds as renewably sourced feedstocks for fuels and chemicals production in a range of industrial applications.