Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Ryan Dehoff
- Ying Yang
- Zhili Feng
- Alex Plotkowski
- Brian Post
- Edgar Lara-Curzio
- Jian Chen
- Jun Qu
- Michael Kirka
- Rangasayee Kannan
- Sudarsanam Babu
- Venkatakrishnan Singanallur Vaidyanathan
- Yong Chae Lim
- Adam Willoughby
- Alice Perrin
- Amir K Ziabari
- Blane Fillingim
- Bruce A Pint
- Christopher Ledford
- Corson Cramer
- Costas Tsouris
- David S Parker
- Diana E Hun
- Eric Wolfe
- James A Haynes
- Lauren Heinrich
- Meghan Lamm
- Peter Wang
- Philip Bingham
- Philip Boudreaux
- Rishi Pillai
- Rob Moore II
- Stephen M Killough
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Vincent Paquit
- Wei Zhang
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Adam Stevens
- Alexander Enders
- Alexander I Wiechert
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Benjamin Lawrie
- Benjamin Manard
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Brian Sales
- Bryan Lim
- Bryan Maldonado Puente
- Charles F Weber
- Charles Hawkins
- Chengyun Hua
- Christopher Fancher
- Christopher S Blessinger
- Corey Cooke
- Dali Wang
- David J Mitchell
- Dean T Pierce
- Ethan Self
- Frederic Vautard
- Gabor Halasz
- Gabriel Veith
- Gerry Knapp
- Gina Accawi
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Gs Jung
- Gurneesh Jatana
- Gyoung Gug Jang
- Hsin Wang
- Isaac Sikkema
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jiaqiang Yan
- Jiheon Jun
- Joanna Mcfarlane
- John Holliman II
- Jonathan Willocks
- Jong K Keum
- Jordan Wright
- Joseph Olatt
- Jovid Rakhmonov
- Junghyun Bae
- Khryslyn G Araño
- Kunal Mondal
- Mahim Mathur
- Marie Romedenne
- Mark M Root
- Marm Dixit
- Matthew Brahlek
- Matthew S Chambers
- Matt Vick
- Mike Zach
- Mina Yoon
- Mingyan Li
- Nancy Dudney
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Nolan Hayes
- Obaid Rahman
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Petro Maksymovych
- Priyanshi Agrawal
- Radu Custelcean
- Roger G Miller
- Rose Montgomery
- Ryan Kerekes
- Sally Ghanem
- Sam Hollifield
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Vandana Rallabandi
- Venugopal K Varma
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.