Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Adam M Guss
- Amit Shyam
- Beth L Armstrong
- Peeyush Nandwana
- Josh Michener
- Ying Yang
- Zhili Feng
- Alex Plotkowski
- Brian Post
- Edgar Lara-Curzio
- Jian Chen
- Jun Qu
- Liangyu Qian
- Rangasayee Kannan
- Ryan Dehoff
- Sudarsanam Babu
- Yong Chae Lim
- Adam Willoughby
- Alice Perrin
- Andrzej Nycz
- Austin L Carroll
- Blane Fillingim
- Bruce A Pint
- Christopher Ledford
- Corson Cramer
- David S Parker
- Eric Wolfe
- Isaiah Dishner
- James A Haynes
- Jeff Foster
- John F Cahill
- Kuntal De
- Lauren Heinrich
- Meghan Lamm
- Michael Kirka
- Rishi Pillai
- Rob Moore II
- Serena Chen
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Udaya C Kalluri
- Wei Zhang
- Xiaohan Yang
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Adam Stevens
- Alex Walters
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Benjamin Lawrie
- Ben Lamm
- Biruk A Feyissa
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Brian Sales
- Bryan Lim
- Carrie Eckert
- Charles Hawkins
- Chengyun Hua
- Chris Masuo
- Christopher Fancher
- Clay Leach
- Costas Tsouris
- Dali Wang
- David J Mitchell
- Dean T Pierce
- Debjani Pal
- Ethan Self
- Frederic Vautard
- Gabor Halasz
- Gabriel Veith
- Gerald Tuskan
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- Ilenne Del Valle Kessra
- James Klett
- Jay D Huenemann
- Jay Reynolds
- Jeff Brookins
- Jiaqiang Yan
- Jiheon Jun
- Joanna Tannous
- Jong K Keum
- Jordan Wright
- Jovid Rakhmonov
- Khryslyn G Araño
- Kyle Davis
- Marie Romedenne
- Marm Dixit
- Matthew Brahlek
- Matthew S Chambers
- Mike Zach
- Mina Yoon
- Nancy Dudney
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Paul Abraham
- Peter Wang
- Petro Maksymovych
- Priyanshi Agrawal
- Radu Custelcean
- Roger G Miller
- Rose Montgomery
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Venugopal K Varma
- Vilmos Kertesz
- Vincent Paquit
- Weicheng Zhong
- Wei Tang
- William Alexander
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yang Liu
- Yiyu Wang
- Yukinori Yamamoto

Finite element (FE) numerical computation method is widely used to facilitate the design and optimization of manufacturing processes using two types of solvers, implicit and explicit.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

This invention describes a new combustion synthesis route to produce high purity, high performance DRX cathodes for next-generation Li-ion batteries.

When a magnetic field is applied to a type-II superconductor, it penetrates the superconductor in a thin cylindrical line known as a vortex line. Traditional methods to manipulate these vortices are limited in precision and affect a broad area.