Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Chris Tyler
- Amit Shyam
- Beth L Armstrong
- Justin West
- Peeyush Nandwana
- Brian Post
- Ritin Mathews
- Ying Yang
- Zhili Feng
- Alex Plotkowski
- Edgar Lara-Curzio
- Jian Chen
- Jun Qu
- Rangasayee Kannan
- Ryan Dehoff
- Sudarsanam Babu
- Yong Chae Lim
- Adam Willoughby
- Alice Perrin
- Blane Fillingim
- Bruce A Pint
- Christopher Ledford
- Corson Cramer
- David Olvera Trejo
- David S Parker
- Eric Wolfe
- J.R. R Matheson
- James A Haynes
- James Klett
- Jaydeep Karandikar
- Lauren Heinrich
- Meghan Lamm
- Michael Kirka
- Mike Zach
- Rishi Pillai
- Rob Moore II
- Scott Smith
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Wei Zhang
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Adam Stevens
- Akash Jag Prasad
- Andres Marquez Rossy
- Andrew F May
- Annetta Burger
- Ben Garrison
- Benjamin Lawrie
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Brian Gibson
- Brian Sales
- Bruce Moyer
- Bryan Lim
- Calen Kimmell
- Carter Christopher
- Chance C Brown
- Charles Hawkins
- Charlie Cook
- Chengyun Hua
- Christopher Fancher
- Christopher Hershey
- Costas Tsouris
- Craig Blue
- Dali Wang
- Daniel Rasmussen
- David J Mitchell
- Dean T Pierce
- Debjani Pal
- Debraj De
- Emma Betters
- Ethan Self
- Frederic Vautard
- Gabor Halasz
- Gabriel Veith
- Gautam Malviya Thakur
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Greg Corson
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- James Gaboardi
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse Heineman
- Jesse McGaha
- Jiaqiang Yan
- Jiheon Jun
- John Lindahl
- John Potter
- Jong K Keum
- Jordan Wright
- Josh B Harbin
- Jovid Rakhmonov
- Justin Griswold
- Kevin Sparks
- Khryslyn G Araño
- Kuntal De
- Laetitia H Delmau
- Liz McBride
- Luke Sadergaski
- Marie Romedenne
- Marm Dixit
- Matthew Brahlek
- Matthew S Chambers
- Mina Yoon
- Nancy Dudney
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Peter Wang
- Petro Maksymovych
- Priyanshi Agrawal
- Radu Custelcean
- Roger G Miller
- Rose Montgomery
- Sandra Davern
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Todd Thomas
- Tolga Aytug
- Tony Beard
- Tony L Schmitz
- Trevor Aguirre
- Venugopal K Varma
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xiuling Nie
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.