Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Brian Post
- Chris Tyler
- Peeyush Nandwana
- Amit Shyam
- Beth L Armstrong
- Justin West
- Peter Wang
- Andrzej Nycz
- Rangasayee Kannan
- Ritin Mathews
- Ryan Dehoff
- Ying Yang
- Zhili Feng
- Alex Plotkowski
- Blane Fillingim
- Chris Masuo
- Edgar Lara-Curzio
- Jian Chen
- Jun Qu
- Michael Kirka
- Sam Hollifield
- Sudarsanam Babu
- Thomas Feldhausen
- Yong Chae Lim
- Adam Stevens
- Adam Willoughby
- Ahmed Hassen
- Alice Perrin
- Bruce A Pint
- Chad Steed
- Christopher Ledford
- Corson Cramer
- David Olvera Trejo
- David S Parker
- Eric Wolfe
- J.R. R Matheson
- James A Haynes
- Jaydeep Karandikar
- Joshua Vaughan
- Junghoon Chae
- Lauren Heinrich
- Meghan Lamm
- Mingyan Li
- Rishi Pillai
- Rob Moore II
- Scott Smith
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Tomas Grejtak
- Travis Humble
- Wei Zhang
- William Carter
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Aaron Werth
- Akash Jag Prasad
- Alex Roschli
- Ali Passian
- Amir K Ziabari
- Amy Elliott
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Benjamin Lawrie
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Brian Gibson
- Brian Sales
- Brian Weber
- Bryan Lim
- Calen Kimmell
- Cameron Adkins
- Charles Hawkins
- Chengyun Hua
- Christopher Fancher
- Costas Tsouris
- Craig Blue
- Dali Wang
- David J Mitchell
- Dean T Pierce
- Emilio Piesciorovsky
- Emma Betters
- Ethan Self
- Frederic Vautard
- Fred List III
- Gabor Halasz
- Gabriel Veith
- Gary Hahn
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Greg Corson
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Hsin Wang
- Isaac Sikkema
- Isha Bhandari
- James Klett
- Jason Jarnagin
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- Jiaqiang Yan
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- John Lindahl
- John Potter
- Jong K Keum
- Jordan Wright
- Joseph Olatt
- Josh B Harbin
- Jovid Rakhmonov
- Keith Carver
- Kevin Spakes
- Khryslyn G Araño
- Kunal Mondal
- Liam White
- Lilian V Swann
- Luke Koch
- Luke Meyer
- Mahim Mathur
- Marie Romedenne
- Mark Provo II
- Marm Dixit
- Mary A Adkisson
- Matthew Brahlek
- Matthew S Chambers
- Michael Borish
- Mike Zach
- Mina Yoon
- Nance Ericson
- Nancy Dudney
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Oscar Martinez
- Patxi Fernandez-Zelaia
- Petro Maksymovych
- Philip Bingham
- Priyanshi Agrawal
- Radu Custelcean
- Raymond Borges Hink
- Richard Howard
- Rob Root
- Roger G Miller
- Rose Montgomery
- Samudra Dasgupta
- Sarah Graham
- Sergiy Kalnaus
- Shajjad Chowdhury
- Srikanth Yoginath
- Steven Guzorek
- Sunyong Kwon
- Thomas Butcher
- Thomas R Muth
- Tim Graening Seibert
- T Oesch
- Tolga Aytug
- Tony L Schmitz
- Trevor Aguirre
- Varisara Tansakul
- Venkatakrishnan Singanallur Vaidyanathan
- Venugopal K Varma
- Vincent Paquit
- Vladimir Orlyanchik
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yarom Polsky
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.