Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Tomonori Saito
- Anisur Rahman
- Jeff Foster
- Diana E Hun
- Mary Danielson
- Syed Islam
- Alexei P Sokolov
- Catalin Gainaru
- Edgar Lara-Curzio
- Michelle Lehmann
- Mike Zach
- Natasha Ghezawi
- Ramesh Bhave
- Steven J Zinkle
- Vera Bocharova
- Yanli Wang
- Ying Yang
- Yutai Kato
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Willoughby
- Andrew F May
- Ben Garrison
- Benjamin L Doughty
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Bruce A Pint
- Bruce Moyer
- Charles Hawkins
- Charlie Cook
- Christopher Hershey
- Corson Cramer
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Eric Wolfe
- Frederic Vautard
- Hsin Wang
- Isaiah Dishner
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Josh Michener
- Justin Griswold
- Karen Cortes Guzman
- Kuma Sumathipala
- Kuntal De
- Laetitia H Delmau
- Liangyu Qian
- Luke Sadergaski
- Marie Romedenne
- Mengjia Tang
- Nedim Cinbiz
- Nick Galan
- Nick Gregorich
- Nidia Gallego
- Padhraic L Mulligan
- Rishi Pillai
- Robert Sacci
- Sandra Davern
- Santanu Roy
- Shailesh Dangwal
- Shannon M Mahurin
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Tao Hong
- Tim Graening Seibert
- Tony Beard
- Uvinduni Premadasa
- Weicheng Zhong
- Wei Tang
- Xiang Chen

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

PET is used in many commercial products, but only a fraction is mechanically recycled, and even less is chemically recycled.

Developed a novel energy efficient, cost-effective, environmentally friendly process for separation of lithium from end-of-life lithium-ion batteries.

This work presents a novel method for upcycling polyethylene terephthalate (PET) waste into sustainable vitrimer materials. By combining bio-based crosslinkers with our PET-based macromonomer, we developed dynamically bonded plastics that are renewably sourced.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

This invention introduces an innovative method for upcycling waste polyalkenamers, such as polybutadiene and acrylonitrile butadiene styrene, into high-performance materials through ring-opening metathesis polymerization (ROMP).