Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Tomonori Saito
- Costas Tsouris
- Andrew Sutton
- Anisur Rahman
- Jeff Foster
- Michelle Kidder
- Radu Custelcean
- Alex Plotkowski
- Amit Shyam
- Diana E Hun
- Gyoung Gug Jang
- Mary Danielson
- Syed Islam
- Alexander I Wiechert
- Alexei P Sokolov
- Catalin Gainaru
- Gs Jung
- James A Haynes
- Michael Cordon
- Michelle Lehmann
- Natasha Ghezawi
- Ramesh Bhave
- Sumit Bahl
- Vera Bocharova
- Zoriana Demchuk
- Achutha Tamraparni
- Ajibola Lawal
- Alice Perrin
- Andres Marquez Rossy
- Benjamin L Doughty
- Benjamin Manard
- Canhai Lai
- Charles F Weber
- Corson Cramer
- Dhruba Deka
- Gerry Knapp
- Isaiah Dishner
- James Parks II
- Jeffrey Einkauf
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Josh Michener
- Jovid Rakhmonov
- Karen Cortes Guzman
- Kuma Sumathipala
- Liangyu Qian
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Mengjia Tang
- Mina Yoon
- Nicholas Richter
- Nick Galan
- Nick Gregorich
- Peeyush Nandwana
- Robert Sacci
- Ryan Dehoff
- Santanu Roy
- Shailesh Dangwal
- Shannon M Mahurin
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Sreshtha Sinha Majumdar
- Sunyong Kwon
- Tao Hong
- Uvinduni Premadasa
- Vandana Rallabandi
- Yeonshil Park
- Ying Yang

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

PET is used in many commercial products, but only a fraction is mechanically recycled, and even less is chemically recycled.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Developed a novel energy efficient, cost-effective, environmentally friendly process for separation of lithium from end-of-life lithium-ion batteries.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This work presents a novel method for upcycling polyethylene terephthalate (PET) waste into sustainable vitrimer materials. By combining bio-based crosslinkers with our PET-based macromonomer, we developed dynamically bonded plastics that are renewably sourced.

Monoterpenes conversion to C10 aromatics (60%) and C10 cycloalkanes (40%) in an inert environment, provides an established route for sustainable aviation fuel (SAF) blends sourced directly from biomass captured terpenes mixtures.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.