Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Tomonori Saito
- Corson Cramer
- Steve Bullock
- Ali Passian
- Anisur Rahman
- Jeff Foster
- Diana E Hun
- Greg Larsen
- James Klett
- Mary Danielson
- Syed Islam
- Trevor Aguirre
- Alexei P Sokolov
- Catalin Gainaru
- Michelle Lehmann
- Natasha Ghezawi
- Ramesh Bhave
- Vera Bocharova
- Vlastimil Kunc
- Zoriana Demchuk
- Achutha Tamraparni
- Ahmed Hassen
- Benjamin L Doughty
- Beth L Armstrong
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Claire Marvinney
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Dustin Gilmer
- Harper Jordan
- Isaiah Dishner
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jordan Wright
- Josh Michener
- Karen Cortes Guzman
- Kuma Sumathipala
- Liangyu Qian
- Mengjia Tang
- Michael Kirka
- Nadim Hmeidat
- Nance Ericson
- Nick Galan
- Nick Gregorich
- Robert Sacci
- Sana Elyas
- Santanu Roy
- Shailesh Dangwal
- Shannon M Mahurin
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Srikanth Yoginath
- Steven Guzorek
- Tao Hong
- Tony Beard
- Uvinduni Premadasa
- Varisara Tansakul

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

PET is used in many commercial products, but only a fraction is mechanically recycled, and even less is chemically recycled.

Developed a novel energy efficient, cost-effective, environmentally friendly process for separation of lithium from end-of-life lithium-ion batteries.

This work presents a novel method for upcycling polyethylene terephthalate (PET) waste into sustainable vitrimer materials. By combining bio-based crosslinkers with our PET-based macromonomer, we developed dynamically bonded plastics that are renewably sourced.

The technologies provide additively manufactured thermal protection system.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).