Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Tomonori Saito
- Ilias Belharouak
- Diana E Hun
- Anisur Rahman
- Jeff Foster
- Mary Danielson
- Michelle Lehmann
- Singanallur Venkatakrishnan
- Syed Islam
- Alexei P Sokolov
- Alexey Serov
- Ali Abouimrane
- Amir K Ziabari
- Catalin Gainaru
- Jaswinder Sharma
- Marm Dixit
- Natasha Ghezawi
- Philip Bingham
- Philip Boudreaux
- Ramesh Bhave
- Ruhul Amin
- Ryan Dehoff
- Stephen M Killough
- Vera Bocharova
- Vincent Paquit
- Xiang Lyu
- Zoriana Demchuk
- Achutha Tamraparni
- Amit K Naskar
- Benjamin L Doughty
- Ben LaRiviere
- Beth L Armstrong
- Bryan Maldonado Puente
- Corey Cooke
- Corson Cramer
- David L Wood III
- Gabriel Veith
- Georgios Polyzos
- Gina Accawi
- Gurneesh Jatana
- Holly Humphrey
- Hongbin Sun
- Isaiah Dishner
- James Szybist
- Jonathan Willocks
- Josh Michener
- Junbin Choi
- Karen Cortes Guzman
- Khryslyn G Araño
- Kuma Sumathipala
- Liangyu Qian
- Logan Kearney
- Lu Yu
- Mark M Root
- Meghan Lamm
- Mengjia Tang
- Michael Kirka
- Michael Toomey
- Nance Ericson
- Nick Galan
- Nick Gregorich
- Nihal Kanbargi
- Nolan Hayes
- Obaid Rahman
- Paul Groth
- Peter Wang
- Pradeep Ramuhalli
- Ritu Sahore
- Robert Sacci
- Ryan Kerekes
- Sally Ghanem
- Santanu Roy
- Shailesh Dangwal
- Shannon M Mahurin
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Tao Hong
- Todd Toops
- Uvinduni Premadasa
- Yaocai Bai
- Zhijia Du

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

PET is used in many commercial products, but only a fraction is mechanically recycled, and even less is chemically recycled.

Developed a novel energy efficient, cost-effective, environmentally friendly process for separation of lithium from end-of-life lithium-ion batteries.

This work presents a novel method for upcycling polyethylene terephthalate (PET) waste into sustainable vitrimer materials. By combining bio-based crosslinkers with our PET-based macromonomer, we developed dynamically bonded plastics that are renewably sourced.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

This invention introduces an innovative method for upcycling waste polyalkenamers, such as polybutadiene and acrylonitrile butadiene styrene, into high-performance materials through ring-opening metathesis polymerization (ROMP).