Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Tomonori Saito
- Anisur Rahman
- Jeff Foster
- Diana E Hun
- Mary Danielson
- Syed Islam
- Alexei P Sokolov
- Catalin Gainaru
- Michelle Lehmann
- Mike Zach
- Natasha Ghezawi
- Ramesh Bhave
- Vera Bocharova
- Zoriana Demchuk
- Achutha Tamraparni
- Alexander I Wiechert
- Andrew F May
- Ben Garrison
- Benjamin L Doughty
- Benjamin Manard
- Brad Johnson
- Bruce Moyer
- Charles F Weber
- Charlie Cook
- Christopher Hershey
- Corson Cramer
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Govindarajan Muralidharan
- Hsin Wang
- Isaac Sikkema
- Isaiah Dishner
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Joanna Mcfarlane
- John Lindahl
- Jonathan Willocks
- Joseph Olatt
- Josh Michener
- Justin Griswold
- Karen Cortes Guzman
- Kuma Sumathipala
- Kunal Mondal
- Kuntal De
- Laetitia H Delmau
- Liangyu Qian
- Luke Sadergaski
- Mahim Mathur
- Matt Vick
- Mengjia Tang
- Mingyan Li
- Nedim Cinbiz
- Nick Galan
- Nick Gregorich
- Oscar Martinez
- Padhraic L Mulligan
- Robert Sacci
- Rose Montgomery
- Sam Hollifield
- Sandra Davern
- Santanu Roy
- Shailesh Dangwal
- Shannon M Mahurin
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Tao Hong
- Thomas R Muth
- Tony Beard
- Uvinduni Premadasa
- Vandana Rallabandi
- Venugopal K Varma

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

PET is used in many commercial products, but only a fraction is mechanically recycled, and even less is chemically recycled.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Developed a novel energy efficient, cost-effective, environmentally friendly process for separation of lithium from end-of-life lithium-ion batteries.

This work presents a novel method for upcycling polyethylene terephthalate (PET) waste into sustainable vitrimer materials. By combining bio-based crosslinkers with our PET-based macromonomer, we developed dynamically bonded plastics that are renewably sourced.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

This invention introduces an innovative method for upcycling waste polyalkenamers, such as polybutadiene and acrylonitrile butadiene styrene, into high-performance materials through ring-opening metathesis polymerization (ROMP).