Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Peeyush Nandwana
- Rama K Vasudevan
- Bishnu Prasad Thapaliya
- Sergei V Kalinin
- Yongtao Liu
- Zhenzhen Yang
- Craig A Bridges
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Shannon M Mahurin
- Amit Shyam
- Blane Fillingim
- Brian Post
- Edgar Lara-Curzio
- Ilja Popovs
- Kashif Nawaz
- Lauren Heinrich
- Li-Qi Qiu
- Rangasayee Kannan
- Saurabh Prakash Pethe
- Stephen Jesse
- Sudarsanam Babu
- Thomas Feldhausen
- Tolga Aytug
- Uday Vaidya
- Yousub Lee
- Ahmed Hassen
- Alexei P Sokolov
- Alex Plotkowski
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anees Alnajjar
- Anton Ievlev
- Arpan Biswas
- Ben Lamm
- Beth L Armstrong
- Bogdan Dryzhakov
- Brian Fricke
- Bruce A Pint
- Bruce Moyer
- Bryan Lim
- Christopher Fancher
- Christopher Rouleau
- Costas Tsouris
- Debangshu Mukherjee
- Eric Wolfe
- Frederic Vautard
- Gerd Duscher
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jamieson Brechtl
- Jayanthi Kumar
- Jay Reynolds
- Jeff Brookins
- Jewook Park
- Jong K Keum
- Kai Li
- Kaustubh Mungale
- Kyle Gluesenkamp
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Meghan Lamm
- Mina Yoon
- Nageswara Rao
- Neus Domingo Marimon
- Nickolay Lavrik
- Nidia Gallego
- Ondrej Dyck
- Peter Wang
- Phillip Halstenberg
- Radu Custelcean
- Ryan Dehoff
- Saban Hus
- Sai Mani Prudhvi Valleti
- Santa Jansone-Popova
- Shajjad Chowdhury
- Steven J Zinkle
- Steven Randolph
- Subhamay Pramanik
- Sumner Harris
- Tao Hong
- Tim Graening Seibert
- Tomas Grejtak
- Tomonori Saito
- Utkarsh Pratiush
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yutai Kato
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.