Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Shannon M Mahurin
- Edgar Lara-Curzio
- Ilja Popovs
- Li-Qi Qiu
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Ahmed Hassen
- Alexei P Sokolov
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Bruce Moyer
- Eric Wolfe
- Frederic Vautard
- Jayanthi Kumar
- Kaustubh Mungale
- Keju An
- Meghan Lamm
- Nageswara Rao
- Nidia Gallego
- Phillip Halstenberg
- Santa Jansone-Popova
- Shajjad Chowdhury
- Subhamay Pramanik
- Tao Hong
- Tomonori Saito
- Vlastimil Kunc

Demand for lithium is expected to increase drastically due to the use of rechargeable lithium-ion batteries used in portable electronics and electric vehicles. An efficient method to extract lithium is necessary to help meet this demand.

This invention is a molten metal magnetic liquid, also known as a ferrofluid. Utilizing a metal as the base fluid enables the ferrofluid to maintain magnetic properties up to a temperature of 1000 degrees Celsius.

Anisotropic bonded critical rare earth free permanent magnets in a polymer matrix fabricated using an additive manufacturing process.

The invention is a material that will selectively absorb lithium from process waters, and then in a subsequent step, allow the lithium to be released and concentrated; allowing efficient lithium extraction from fluids for use as commodity chemicals.

Low-Temperature Electrochemical Conversion of Carbon Dioxide into Graphite in Molten Carbonate Salts
The capture and conversion of atmospheric carbon dioxide (CO2) into non-volatile value-added solid carbon products is an urgent need to address the deleterious effects of the rising level of atmospheric CO2.

Selective CO2/N2 separation using molecular sieve membranes.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention introduces a method for selectively extracting lithium from lithium sulfate aqueous solutions using an aluminum-containing sorbent material.