Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Isabelle Snyder
- Joseph Chapman
- Nicholas Peters
- Shannon M Mahurin
- Anees Alnajjar
- Edgar Lara-Curzio
- Emilio Piesciorovsky
- Hsuan-Hao Lu
- Ilja Popovs
- Joseph Lukens
- Li-Qi Qiu
- Muneer Alshowkan
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Aaron Werth
- Aaron Wilson
- Adam Siekmann
- Ahmed Hassen
- Alexei P Sokolov
- Ali Riza Ekti
- Ben Lamm
- Beth L Armstrong
- Brian Williams
- Bruce Moyer
- Elizabeth Piersall
- Eric Wolfe
- Eve Tsybina
- Frederic Vautard
- Gary Hahn
- Jayanthi Kumar
- Kaustubh Mungale
- Mariam Kiran
- Meghan Lamm
- Nageswara Rao
- Nidia Gallego
- Nils Stenvig
- Ozgur Alaca
- Phillip Halstenberg
- Raymond Borges Hink
- Santa Jansone-Popova
- Shajjad Chowdhury
- Subhamay Pramanik
- Subho Mukherjee
- Tao Hong
- Tomonori Saito
- Viswadeep Lebakula
- Vivek Sujan
- Vlastimil Kunc
- Yarom Polsky

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.