Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Sheng Dai
- Kashif Nawaz
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Joe Rendall
- Zhenzhen Yang
- Zhiming Gao
- Craig A Bridges
- Kai Li
- Praveen Cheekatamarla
- Shannon M Mahurin
- Vishaldeep Sharma
- Alexey Serov
- Beth L Armstrong
- Edgar Lara-Curzio
- Ilja Popovs
- James Manley
- Jamieson Brechtl
- Jaswinder Sharma
- Kyle Gluesenkamp
- Li-Qi Qiu
- Meghan Lamm
- Mingkan Zhang
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Xiang Lyu
- Ahmed Hassen
- Alexei P Sokolov
- Amit K Naskar
- Anees Alnajjar
- Ben Lamm
- Bo Shen
- Brian Fricke
- Bruce Moyer
- Cheng-Min Yang
- Easwaran Krishnan
- Eric Wolfe
- Frederic Vautard
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- Huixin (anna) Jiang
- James Szybist
- Jayanthi Kumar
- Jonathan Willocks
- Junbin Choi
- Kaustubh Mungale
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Melanie Moses-DeBusk Debusk
- Michael Toomey
- Michelle Lehmann
- Muneeshwaran Murugan
- Nageswara Rao
- Nickolay Lavrik
- Nidia Gallego
- Nihal Kanbargi
- Pengtao Wang
- Phillip Halstenberg
- Ritu Sahore
- Santa Jansone-Popova
- Shajjad Chowdhury
- Subhamay Pramanik
- Tao Hong
- Todd Toops
- Tomonori Saito
- Troy Seay
- Vlastimil Kunc

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

US coastal and island communities have vulnerable energy infrastructure and high energy costs, which are exacerbated by climate change.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The heat exchanger is a three-medium heat exchanger with phase change material (PCM) stored in the external fin tubes. It allows the refrigerant flowing inside the internal fin tubes and the air to