Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Shannon M Mahurin
- Yong Chae Lim
- Zhili Feng
- Alexey Serov
- Beth L Armstrong
- Edgar Lara-Curzio
- Ilja Popovs
- Jaswinder Sharma
- Jian Chen
- Li-Qi Qiu
- Meghan Lamm
- Rangasayee Kannan
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Wei Zhang
- Xiang Lyu
- Adam Stevens
- Ahmed Hassen
- Alexei P Sokolov
- Amit K Naskar
- Anees Alnajjar
- Ben Lamm
- Brian Post
- Bruce Moyer
- Bryan Lim
- Dali Wang
- Eric Wolfe
- Frederic Vautard
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- James Szybist
- Jayanthi Kumar
- Jiheon Jun
- Jonathan Willocks
- Junbin Choi
- Kaustubh Mungale
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Michael Toomey
- Michelle Lehmann
- Nageswara Rao
- Nidia Gallego
- Nihal Kanbargi
- Peeyush Nandwana
- Phillip Halstenberg
- Priyanshi Agrawal
- Ritu Sahore
- Roger G Miller
- Ryan Dehoff
- Santa Jansone-Popova
- Sarah Graham
- Shajjad Chowdhury
- Subhamay Pramanik
- Sudarsanam Babu
- Tao Hong
- Todd Toops
- Tomas Grejtak
- Tomonori Saito
- Vlastimil Kunc
- William Peter
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.