Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Sheng Dai
- Kashif Nawaz
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Joe Rendall
- Zhenzhen Yang
- Zhiming Gao
- Craig A Bridges
- Kai Li
- Praveen Cheekatamarla
- Shannon M Mahurin
- Vishaldeep Sharma
- Yong Chae Lim
- Zhili Feng
- Edgar Lara-Curzio
- Ilja Popovs
- James Manley
- Jamieson Brechtl
- Jian Chen
- Kyle Gluesenkamp
- Li-Qi Qiu
- Mingkan Zhang
- Rangasayee Kannan
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Wei Zhang
- Adam Stevens
- Ahmed Hassen
- Alexei P Sokolov
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Bo Shen
- Brian Fricke
- Brian Post
- Bruce Moyer
- Bryan Lim
- Cheng-Min Yang
- Dali Wang
- Easwaran Krishnan
- Eric Wolfe
- Frederic Vautard
- Hongbin Sun
- Huixin (anna) Jiang
- Jayanthi Kumar
- Jiheon Jun
- Kaustubh Mungale
- Meghan Lamm
- Melanie Moses-DeBusk Debusk
- Muneeshwaran Murugan
- Nageswara Rao
- Nickolay Lavrik
- Nidia Gallego
- Peeyush Nandwana
- Pengtao Wang
- Phillip Halstenberg
- Priyanshi Agrawal
- Roger G Miller
- Ryan Dehoff
- Santa Jansone-Popova
- Sarah Graham
- Shajjad Chowdhury
- Subhamay Pramanik
- Sudarsanam Babu
- Tao Hong
- Tomas Grejtak
- Tomonori Saito
- Troy Seay
- Vlastimil Kunc
- William Peter
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

US coastal and island communities have vulnerable energy infrastructure and high energy costs, which are exacerbated by climate change.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.