Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Radu Custelcean
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Costas Tsouris
- Zhenzhen Yang
- Craig A Bridges
- Gyoung Gug Jang
- Jeffrey Einkauf
- Shannon M Mahurin
- Benjamin L Doughty
- Bruce Moyer
- Edgar Lara-Curzio
- Gs Jung
- Ilja Popovs
- Li-Qi Qiu
- Nikki Thiele
- Santa Jansone-Popova
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Ahmed Hassen
- Alexander I Wiechert
- Alexei P Sokolov
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Eric Wolfe
- Frederic Vautard
- Jayanthi Kumar
- Jennifer M Pyles
- Jong K Keum
- Kaustubh Mungale
- Laetitia H Delmau
- Luke Sadergaski
- Md Faizul Islam
- Meghan Lamm
- Mina Yoon
- Nageswara Rao
- Nidia Gallego
- Phillip Halstenberg
- Santanu Roy
- Shajjad Chowdhury
- Subhamay Pramanik
- Tao Hong
- Tomonori Saito
- Uvinduni Premadasa
- Vera Bocharova
- Vlastimil Kunc
- Yingzhong Ma

Atmospheric carbon dioxide is captured with an aqueous solution containing a guanidine photobase and a small peptide, using a UV-light stimulus, and subsequently released when the light stimulus is removed.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

To develop efficient and stable liquid sorbents towards carbon capture, a series of functionalized ionic liquids were synthesized and studied in CO2 chemisorption via O–C bond formation.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

Method for separating bulky solids from powders in an automated fashion. Powders are particularly challenging to work with in an automated workflow employing robots for chemical manipulation.

Standard stages for X-ray diffraction are designed to carry holders that are relatively large. This imposes a significant space constraint that can reduce the number of samples analyzed.

Demand for lithium is expected to increase drastically due to the use of rechargeable lithium-ion batteries used in portable electronics and electric vehicles. An efficient method to extract lithium is necessary to help meet this demand.

Technetium is a radioactive isotope that is a byproduct of nuclear processing; there are currently limited mechanisms to capture technetium when uranium is recycled, hindering the efficient recycling of spent nuclear fuel.

Targeted radionuclide therapy (TRT) has emerged as a promising method for cancer treatment, leveraging Meitner-Auger Electron (MAE)-emitting radionuclides.