Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Radu Custelcean
- Beth L Armstrong
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Costas Tsouris
- Zhenzhen Yang
- Craig A Bridges
- Gyoung Gug Jang
- Jeffrey Einkauf
- Jun Qu
- Shannon M Mahurin
- Alex Plotkowski
- Amit Shyam
- Benjamin L Doughty
- Bruce Moyer
- Corson Cramer
- Edgar Lara-Curzio
- Gs Jung
- Ilja Popovs
- James A Haynes
- Li-Qi Qiu
- Meghan Lamm
- Nikki Thiele
- Santa Jansone-Popova
- Saurabh Prakash Pethe
- Steve Bullock
- Sumit Bahl
- Tolga Aytug
- Tomas Grejtak
- Uday Vaidya
- Ahmed Hassen
- Alexander I Wiechert
- Alexei P Sokolov
- Alice Perrin
- Anees Alnajjar
- Ben Lamm
- Bryan Lim
- Christopher Ledford
- David J Mitchell
- Eric Wolfe
- Ethan Self
- Frederic Vautard
- Gabriel Veith
- Gerry Knapp
- James Klett
- Jayanthi Kumar
- Jennifer M Pyles
- Jong K Keum
- Jordan Wright
- Jovid Rakhmonov
- Kaustubh Mungale
- Khryslyn G Araño
- Laetitia H Delmau
- Luke Sadergaski
- Marm Dixit
- Matthew S Chambers
- Md Faizul Islam
- Michael Kirka
- Mina Yoon
- Nageswara Rao
- Nancy Dudney
- Nicholas Richter
- Nidia Gallego
- Peeyush Nandwana
- Phillip Halstenberg
- Rangasayee Kannan
- Santanu Roy
- Sergiy Kalnaus
- Shajjad Chowdhury
- Subhamay Pramanik
- Sunyong Kwon
- Tao Hong
- Tomonori Saito
- Trevor Aguirre
- Uvinduni Premadasa
- Vera Bocharova
- Vlastimil Kunc
- Ying Yang
- Yingzhong Ma
- Yiyu Wang

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.