Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Amit K Naskar
- Craig A Bridges
- Edgar Lara-Curzio
- Shannon M Mahurin
- Ali Riza Ekti
- Frederic Vautard
- Ilja Popovs
- Jaswinder Sharma
- Li-Qi Qiu
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Raymond Borges Hink
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Aaron Werth
- Aaron Wilson
- Ahmed Hassen
- Alexei P Sokolov
- Anees Alnajjar
- Arit Das
- Benjamin L Doughty
- Ben Lamm
- Beth L Armstrong
- Bruce Moyer
- Burak Ozpineci
- Christopher Bowland
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emrullah Aydin
- Eric Wolfe
- Felix L Paulauskas
- Gary Hahn
- Holly Humphrey
- Isaac Sikkema
- Isabelle Snyder
- Jayanthi Kumar
- Joseph Olatt
- Kaustubh Mungale
- Kunal Mondal
- Mahim Mathur
- Meghan Lamm
- Mingyan Li
- Mostak Mohammad
- Nageswara Rao
- Nidia Gallego
- Nils Stenvig
- Omer Onar
- Oscar Martinez
- Ozgur Alaca
- Peter L Fuhr
- Phillip Halstenberg
- Robert E Norris Jr
- Sam Hollifield
- Santa Jansone-Popova
- Santanu Roy
- Shajjad Chowdhury
- Subhamay Pramanik
- Sumit Gupta
- Tao Hong
- Tomonori Saito
- Uvinduni Premadasa
- Vera Bocharova
- Vlastimil Kunc
- Yarom Polsky

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.