Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Sheng Dai
- Chris Masuo
- Parans Paranthaman
- Ryan Dehoff
- Vincent Paquit
- Bishnu Prasad Thapaliya
- Peter Wang
- Zhenzhen Yang
- Alex Walters
- Amit K Naskar
- Craig A Bridges
- Edgar Lara-Curzio
- Michael Kirka
- Rangasayee Kannan
- Shannon M Mahurin
- Singanallur Venkatakrishnan
- Adam Stevens
- Alex Roschli
- Amir K Ziabari
- Brian Gibson
- Brian Post
- Clay Leach
- Frederic Vautard
- Ilja Popovs
- Jaswinder Sharma
- Joshua Vaughan
- Li-Qi Qiu
- Logan Kearney
- Luke Meyer
- Michael Toomey
- Nihal Kanbargi
- Peeyush Nandwana
- Philip Bingham
- Saurabh Prakash Pethe
- Tolga Aytug
- Udaya C Kalluri
- Uday Vaidya
- William Carter
- Ahmed Hassen
- Akash Jag Prasad
- Alexei P Sokolov
- Alice Perrin
- Amit Shyam
- Anees Alnajjar
- Arit Das
- Benjamin L Doughty
- Ben Lamm
- Beth L Armstrong
- Bruce Moyer
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Bowland
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Costas Tsouris
- Diana E Hun
- Eric Wolfe
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Holly Humphrey
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jayanthi Kumar
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- John Potter
- Kaustubh Mungale
- Kitty K Mccracken
- Liam White
- Mark M Root
- Meghan Lamm
- Michael Borish
- Nageswara Rao
- Nidia Gallego
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Phillip Halstenberg
- Riley Wallace
- Ritin Mathews
- Robert E Norris Jr
- Roger G Miller
- Santa Jansone-Popova
- Santanu Roy
- Sarah Graham
- Shajjad Chowdhury
- Soydan Ozcan
- Subhamay Pramanik
- Sudarsanam Babu
- Sumit Gupta
- Tao Hong
- Tomonori Saito
- Tyler Smith
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- Vlastimil Kunc
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.