Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Brian Post
- Andrzej Nycz
- Chris Tyler
- Sheng Dai
- Chris Masuo
- Peter Wang
- Justin West
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Ritin Mathews
- William Carter
- Zhenzhen Yang
- Ahmed Hassen
- Alex Walters
- Blane Fillingim
- Craig A Bridges
- Joshua Vaughan
- Luke Meyer
- Peeyush Nandwana
- Shannon M Mahurin
- Sudarsanam Babu
- Thomas Feldhausen
- Adam Stevens
- Beth L Armstrong
- Brian Gibson
- David Olvera Trejo
- Edgar Lara-Curzio
- Ilja Popovs
- J.R. R Matheson
- Jaydeep Karandikar
- Lauren Heinrich
- Li-Qi Qiu
- Michael Kirka
- Rangasayee Kannan
- Ryan Dehoff
- Saurabh Prakash Pethe
- Scott Smith
- Tolga Aytug
- Udaya C Kalluri
- Uday Vaidya
- Vincent Paquit
- Vlastimil Kunc
- Yousub Lee
- Akash Jag Prasad
- Alexei P Sokolov
- Alex Roschli
- Amir K Ziabari
- Amit Shyam
- Amy Elliott
- Anees Alnajjar
- Ben Lamm
- Bruce Moyer
- Calen Kimmell
- Cameron Adkins
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Clay Leach
- Corson Cramer
- Craig Blue
- Emma Betters
- Eric Wolfe
- Frederic Vautard
- Fred List III
- Gordon Robertson
- Greg Corson
- Isha Bhandari
- James Klett
- Jayanthi Kumar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Lindahl
- John Potter
- Josh B Harbin
- Kaustubh Mungale
- Keith Carver
- Liam White
- Meghan Lamm
- Michael Borish
- Nageswara Rao
- Nidia Gallego
- Philip Bingham
- Phillip Halstenberg
- Richard Howard
- Riley Wallace
- Roger G Miller
- Santa Jansone-Popova
- Sarah Graham
- Shajjad Chowdhury
- Singanallur Venkatakrishnan
- Steve Bullock
- Steven Guzorek
- Subhamay Pramanik
- Tao Hong
- Thomas Butcher
- Tomonori Saito
- Tony L Schmitz
- Trevor Aguirre
- Vladimir Orlyanchik
- William Peter
- Xiaohan Yang
- Yukinori Yamamoto

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.