Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Ilias Belharouak
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Shannon M Mahurin
- Alexey Serov
- Ali Abouimrane
- Beth L Armstrong
- Edgar Lara-Curzio
- Ilja Popovs
- Jaswinder Sharma
- Li-Qi Qiu
- Marm Dixit
- Meghan Lamm
- Ruhul Amin
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Xiang Lyu
- Yaosuo Xue
- Ahmed Hassen
- Alexei P Sokolov
- Amit K Naskar
- Anees Alnajjar
- Ben Lamm
- Ben LaRiviere
- Bruce Moyer
- David L Wood III
- Eric Wolfe
- Fei Wang
- Frederic Vautard
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Hongbin Sun
- James Szybist
- Jayanthi Kumar
- Jonathan Willocks
- Junbin Choi
- Kaustubh Mungale
- Khryslyn G Araño
- Logan Kearney
- Lu Yu
- Michael Toomey
- Michelle Lehmann
- Nageswara Rao
- Nance Ericson
- Nidia Gallego
- Nihal Kanbargi
- Paul Groth
- Phani Ratna Vanamali Marthi
- Phillip Halstenberg
- Pradeep Ramuhalli
- Rafal Wojda
- Ritu Sahore
- Santa Jansone-Popova
- Shajjad Chowdhury
- Sreenivasa Jaldanki
- Subhamay Pramanik
- Suman Debnath
- Sunil Subedi
- Tao Hong
- Todd Toops
- Tomonori Saito
- Vlastimil Kunc
- Yaocai Bai
- Yonghao Gui
- Zhijia Du

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.