Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Adam M Guss
- Parans Paranthaman
- Rama K Vasudevan
- Bishnu Prasad Thapaliya
- Sergei V Kalinin
- Yongtao Liu
- Zhenzhen Yang
- Craig A Bridges
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Shannon M Mahurin
- Edgar Lara-Curzio
- Ilja Popovs
- Josh Michener
- Kyle Kelley
- Li-Qi Qiu
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Xiaohan Yang
- Ahmed Hassen
- Alexei P Sokolov
- Alex Walters
- Andrzej Nycz
- Anees Alnajjar
- Anton Ievlev
- Arpan Biswas
- Austin Carroll
- Ben Lamm
- Beth L Armstrong
- Bruce Moyer
- Carrie Eckert
- Clay Leach
- Eric Wolfe
- Frederic Vautard
- Gerald Tuskan
- Gerd Duscher
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jayanthi Kumar
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- John F Cahill
- Kaustubh Mungale
- Kyle Davis
- Liam Collins
- Liangyu Qian
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Meghan Lamm
- Nageswara Rao
- Neus Domingo Marimon
- Nidia Gallego
- Olga S Ovchinnikova
- Paul Abraham
- Phillip Halstenberg
- Sai Mani Prudhvi Valleti
- Santa Jansone-Popova
- Serena Chen
- Shajjad Chowdhury
- Stephen Jesse
- Subhamay Pramanik
- Sumner Harris
- Tao Hong
- Tomonori Saito
- Udaya C Kalluri
- Utkarsh Pratiush
- Vilmos Kertesz
- Vincent Paquit
- Vlastimil Kunc
- Yang Liu

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.