Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Amit Shyam
- Parans Paranthaman
- Rama K Vasudevan
- Bishnu Prasad Thapaliya
- Sergei V Kalinin
- Yongtao Liu
- Zhenzhen Yang
- Alex Plotkowski
- Craig A Bridges
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Shannon M Mahurin
- Edgar Lara-Curzio
- Ilja Popovs
- James A Haynes
- Kyle Kelley
- Li-Qi Qiu
- Ryan Dehoff
- Saurabh Prakash Pethe
- Sumit Bahl
- Tolga Aytug
- Uday Vaidya
- Adam Stevens
- Ahmed Hassen
- Alexei P Sokolov
- Alice Perrin
- Andres Marquez Rossy
- Anees Alnajjar
- Anton Ievlev
- Arpan Biswas
- Ben Lamm
- Beth L Armstrong
- Brian Post
- Bruce Moyer
- Christopher Fancher
- Dean T Pierce
- Eric Wolfe
- Frederic Vautard
- Gerd Duscher
- Gerry Knapp
- Gordon Robertson
- Jayanthi Kumar
- Jay Reynolds
- Jeff Brookins
- Jovid Rakhmonov
- Kaustubh Mungale
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Meghan Lamm
- Nageswara Rao
- Neus Domingo Marimon
- Nicholas Richter
- Nidia Gallego
- Olga S Ovchinnikova
- Peeyush Nandwana
- Peter Wang
- Phillip Halstenberg
- Rangasayee Kannan
- Roger G Miller
- Sai Mani Prudhvi Valleti
- Santa Jansone-Popova
- Sarah Graham
- Shajjad Chowdhury
- Stephen Jesse
- Subhamay Pramanik
- Sudarsanam Babu
- Sumner Harris
- Sunyong Kwon
- Tao Hong
- Tomonori Saito
- Utkarsh Pratiush
- Vlastimil Kunc
- William Peter
- Ying Yang
- Yukinori Yamamoto

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.