Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Corson Cramer
- Steve Bullock
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Ying Yang
- Zhenzhen Yang
- Craig A Bridges
- Greg Larsen
- James Klett
- Shannon M Mahurin
- Trevor Aguirre
- Vlastimil Kunc
- Ahmed Hassen
- Alice Perrin
- Beth L Armstrong
- Christopher Ledford
- Edgar Lara-Curzio
- Ilja Popovs
- Li-Qi Qiu
- Michael Kirka
- Saurabh Prakash Pethe
- Steven J Zinkle
- Tolga Aytug
- Tomonori Saito
- Uday Vaidya
- Yanli Wang
- Yutai Kato
- Alexei P Sokolov
- Alex Plotkowski
- Amit Shyam
- Anees Alnajjar
- Ben Lamm
- Bruce A Pint
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- David S Parker
- Dustin Gilmer
- Eric Wolfe
- Frederic Vautard
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- Jayanthi Kumar
- John Lindahl
- Jong K Keum
- Jordan Wright
- Kaustubh Mungale
- Meghan Lamm
- Mina Yoon
- Nadim Hmeidat
- Nageswara Rao
- Nicholas Richter
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Phillip Halstenberg
- Radu Custelcean
- Ryan Dehoff
- Sana Elyas
- Santa Jansone-Popova
- Shajjad Chowdhury
- Steven Guzorek
- Subhamay Pramanik
- Sumit Bahl
- Sunyong Kwon
- Tao Hong
- Tim Graening Seibert
- Tony Beard
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The technologies provide additively manufactured thermal protection system.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.