Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Ying Yang
- Zhenzhen Yang
- Craig A Bridges
- Shannon M Mahurin
- Alice Perrin
- Bruce Moyer
- Edgar Lara-Curzio
- Ilja Popovs
- Li-Qi Qiu
- Mike Zach
- Saurabh Prakash Pethe
- Steven J Zinkle
- Tolga Aytug
- Uday Vaidya
- Yanli Wang
- Yutai Kato
- Ahmed Hassen
- Alexei P Sokolov
- Alex Plotkowski
- Amit Shyam
- Andrew F May
- Anees Alnajjar
- Ben Garrison
- Ben Lamm
- Beth L Armstrong
- Brad Johnson
- Bruce A Pint
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- David S Parker
- Debjani Pal
- Eric Wolfe
- Frederic Vautard
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- James A Haynes
- James Klett
- Jayanthi Kumar
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Jong K Keum
- Justin Griswold
- Kaustubh Mungale
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Meghan Lamm
- Michael Kirka
- Mina Yoon
- Nageswara Rao
- Nedim Cinbiz
- Nicholas Richter
- Nidia Gallego
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Phillip Halstenberg
- Radu Custelcean
- Ryan Dehoff
- Sandra Davern
- Santa Jansone-Popova
- Shajjad Chowdhury
- Subhamay Pramanik
- Sumit Bahl
- Sunyong Kwon
- Tao Hong
- Tim Graening Seibert
- Tomonori Saito
- Tony Beard
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.