Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Amit K Naskar
- Craig A Bridges
- Edgar Lara-Curzio
- Shannon M Mahurin
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Frederic Vautard
- Ilja Popovs
- Jaswinder Sharma
- Li-Qi Qiu
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Rishi Pillai
- Saurabh Prakash Pethe
- Steven J Zinkle
- Tolga Aytug
- Uday Vaidya
- Yanli Wang
- Yutai Kato
- Ahmed Hassen
- Alexei P Sokolov
- Alice Perrin
- Anees Alnajjar
- Arit Das
- Benjamin L Doughty
- Ben Lamm
- Beth L Armstrong
- Brandon Johnston
- Bruce Moyer
- Charles Hawkins
- Christopher Bowland
- Christopher Ledford
- Eric Wolfe
- Felix L Paulauskas
- Holly Humphrey
- Jayanthi Kumar
- Jiheon Jun
- Kaustubh Mungale
- Marie Romedenne
- Meghan Lamm
- Michael Kirka
- Nageswara Rao
- Nidia Gallego
- Patxi Fernandez-Zelaia
- Phillip Halstenberg
- Priyanshi Agrawal
- Robert E Norris Jr
- Ryan Dehoff
- Santa Jansone-Popova
- Santanu Roy
- Shajjad Chowdhury
- Subhamay Pramanik
- Sumit Gupta
- Tao Hong
- Tim Graening Seibert
- Tomonori Saito
- Uvinduni Premadasa
- Vera Bocharova
- Vlastimil Kunc
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).