Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Corson Cramer
- Steve Bullock
- Beth L Armstrong
- Parans Paranthaman
- Tomonori Saito
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Gabriel Veith
- Greg Larsen
- Guang Yang
- James Klett
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Shannon M Mahurin
- Trevor Aguirre
- Vlastimil Kunc
- Ahmed Hassen
- Edgar Lara-Curzio
- Ethan Self
- Ilja Popovs
- Jaswinder Sharma
- Li-Qi Qiu
- Robert Sacci
- Saurabh Prakash Pethe
- Sergiy Kalnaus
- Tolga Aytug
- Uday Vaidya
- Alexei P Sokolov
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anees Alnajjar
- Anisur Rahman
- Anna M Mills
- Ben Lamm
- Bruce Moyer
- Chanho Kim
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Dustin Gilmer
- Eric Wolfe
- Felipe Polo Garzon
- Frederic Vautard
- Georgios Polyzos
- Ilias Belharouak
- Jayanthi Kumar
- John Lindahl
- Jordan Wright
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Kaustubh Mungale
- Khryslyn G Araño
- Logan Kearney
- Matthew S Chambers
- Meghan Lamm
- Michael Kirka
- Michael Toomey
- Nadim Hmeidat
- Nageswara Rao
- Nancy Dudney
- Nidia Gallego
- Nihal Kanbargi
- Peng Yang
- Phillip Halstenberg
- Sai Krishna Reddy Adapa
- Sana Elyas
- Santa Jansone-Popova
- Shajjad Chowdhury
- Steven Guzorek
- Subhamay Pramanik
- Tao Hong
- Tony Beard
- Vera Bocharova
- Xiang Lyu

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The technologies provide additively manufactured thermal protection system.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.