Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Chris Tyler
- Sheng Dai
- Justin West
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Ritin Mathews
- Zhenzhen Yang
- Craig A Bridges
- Joseph Chapman
- Nicholas Peters
- Shannon M Mahurin
- Anees Alnajjar
- David Olvera Trejo
- Edgar Lara-Curzio
- Hsuan-Hao Lu
- Ilja Popovs
- J.R. R Matheson
- Jaydeep Karandikar
- Joseph Lukens
- Li-Qi Qiu
- Muneer Alshowkan
- Saurabh Prakash Pethe
- Scott Smith
- Tolga Aytug
- Uday Vaidya
- Ahmed Hassen
- Akash Jag Prasad
- Alexei P Sokolov
- Ben Lamm
- Beth L Armstrong
- Brian Gibson
- Brian Post
- Brian Williams
- Bruce Moyer
- Calen Kimmell
- Emma Betters
- Eric Wolfe
- Frederic Vautard
- Greg Corson
- Jayanthi Kumar
- Jesse Heineman
- John Potter
- Josh B Harbin
- Kaustubh Mungale
- Mariam Kiran
- Meghan Lamm
- Nageswara Rao
- Nidia Gallego
- Phillip Halstenberg
- Santa Jansone-Popova
- Shajjad Chowdhury
- Subhamay Pramanik
- Tao Hong
- Tomonori Saito
- Tony L Schmitz
- Vladimir Orlyanchik
- Vlastimil Kunc

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.