Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Shannon M Mahurin
- Edgar Lara-Curzio
- Ilja Popovs
- Li-Qi Qiu
- Saurabh Prakash Pethe
- Tolga Aytug
- Tomonori Saito
- Uday Vaidya
- Ahmed Hassen
- Alexei P Sokolov
- Alex Roschli
- Anees Alnajjar
- Ben Lamm
- Beth L Armstrong
- Bruce Moyer
- Diana E Hun
- Easwaran Krishnan
- Eric Wolfe
- Erin Webb
- Evin Carter
- Frederic Vautard
- James Manley
- Jamieson Brechtl
- Jayanthi Kumar
- Jeremy Malmstead
- Joe Rendall
- Karen Cortes Guzman
- Kashif Nawaz
- Kaustubh Mungale
- Kitty K Mccracken
- Kuma Sumathipala
- Meghan Lamm
- Mengdawn Cheng
- Mengjia Tang
- Muneeshwaran Murugan
- Nageswara Rao
- Nidia Gallego
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Phillip Halstenberg
- Santa Jansone-Popova
- Shajjad Chowdhury
- Soydan Ozcan
- Subhamay Pramanik
- Tao Hong
- Tyler Smith
- Vlastimil Kunc
- Xianhui Zhao
- Zoriana Demchuk

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

To develop efficient and stable liquid sorbents towards carbon capture, a series of functionalized ionic liquids were synthesized and studied in CO2 chemisorption via O–C bond formation.