Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Sheng Dai
- Parans Paranthaman
- Bishnu Prasad Thapaliya
- Zhenzhen Yang
- Craig A Bridges
- Isabelle Snyder
- Shannon M Mahurin
- Edgar Lara-Curzio
- Emilio Piesciorovsky
- Ilja Popovs
- Li-Qi Qiu
- Saurabh Prakash Pethe
- Tolga Aytug
- Uday Vaidya
- Aaron Werth
- Aaron Wilson
- Adam Siekmann
- Ahmed Hassen
- Alexander I Wiechert
- Alexei P Sokolov
- Ali Riza Ekti
- Anees Alnajjar
- Benjamin Manard
- Ben Lamm
- Beth L Armstrong
- Bruce Moyer
- Charles F Weber
- Costas Tsouris
- Derek Dwyer
- Elizabeth Piersall
- Eric Wolfe
- Eve Tsybina
- Frederic Vautard
- Gary Hahn
- Jayanthi Kumar
- Joanna Mcfarlane
- Jonathan Willocks
- Kaustubh Mungale
- Louise G Evans
- Matt Vick
- Meghan Lamm
- Mengdawn Cheng
- Nageswara Rao
- Nidia Gallego
- Nils Stenvig
- Ozgur Alaca
- Paula Cable-Dunlap
- Phillip Halstenberg
- Raymond Borges Hink
- Richard L. Reed
- Santa Jansone-Popova
- Shajjad Chowdhury
- Subhamay Pramanik
- Subho Mukherjee
- Tao Hong
- Tomonori Saito
- Vandana Rallabandi
- Viswadeep Lebakula
- Vivek Sujan
- Vlastimil Kunc
- Yarom Polsky

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

A novel strategy was developed to solve the limitations of the current sorbent systems in CO2 chemisorption in terms of energy consumption in CO2 release and improved CO2 uptake capacity.

This invention introduces a novel sintering approach to produce hard carbon with a finely tuned microstructure, derived from biomass and plastic waste.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.