Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Lawrence {Larry} M Anovitz
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- William Carter
- Alex Walters
- Andrew G Stack
- Bruce Hannan
- Christopher Hobbs
- Eddie Lopez Honorato
- Joshua Vaughan
- Juliane Weber
- Loren L Funk
- Matt Kurley III
- Peng Yang
- Peter Wang
- Polad Shikhaliev
- Rodney D Hunt
- Ryan Heldt
- Sai Krishna Reddy Adapa
- Theodore Visscher
- Tyler Gerczak
- Vladislav N Sedov
- Yacouba Diawara

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

An efficient, eco-friendly metal extraction using ultrasonic leaching, ideal for lithium and magnesium recovery from minerals and waste.