Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Lawrence {Larry} M Anovitz
- Adam Willoughby
- Rishi Pillai
- Yaosuo Xue
- Andrew G Stack
- Brandon Johnston
- Bruce A Pint
- Charles Hawkins
- Fei Wang
- Jiheon Jun
- Juliane Weber
- Marie Romedenne
- Peng Yang
- Phani Ratna Vanamali Marthi
- Priyanshi Agrawal
- Rafal Wojda
- Sai Krishna Reddy Adapa
- Sreenivasa Jaldanki
- Suman Debnath
- Sunil Subedi
- Yong Chae Lim
- Yonghao Gui
- Zhili Feng

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.

Technologies directed to a multi-port autonomous reconfigurable solar power plant are described.

The technology provides a transformational approach to digitally manufacture structural alloys with co- optimized strength and environmental resistance