Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Lawrence {Larry} M Anovitz
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Yaosuo Xue
- Adam Stevens
- Alex Walters
- Amy Elliott
- Andrew G Stack
- Cameron Adkins
- Erin Webb
- Evin Carter
- Fei Wang
- Isha Bhandari
- Jeremy Malmstead
- Joshua Vaughan
- Juliane Weber
- Kitty K Mccracken
- Liam White
- Michael Borish
- Oluwafemi Oyedeji
- Peng Yang
- Peter Wang
- Phani Ratna Vanamali Marthi
- Rafal Wojda
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Sai Krishna Reddy Adapa
- Sarah Graham
- Soydan Ozcan
- Sreenivasa Jaldanki
- Sudarsanam Babu
- Suman Debnath
- Sunil Subedi
- Tyler Smith
- William Peter
- Xianhui Zhao
- Yonghao Gui
- Yukinori Yamamoto

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.