Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Lawrence {Larry} M Anovitz
- Yong Chae Lim
- Rangasayee Kannan
- Yaosuo Xue
- Adam Stevens
- Andrew G Stack
- Brian Post
- Bryan Lim
- Fei Wang
- Jiheon Jun
- Juliane Weber
- Peeyush Nandwana
- Peng Yang
- Phani Ratna Vanamali Marthi
- Priyanshi Agrawal
- Rafal Wojda
- Roger G Miller
- Ryan Dehoff
- Sai Krishna Reddy Adapa
- Sarah Graham
- Sreenivasa Jaldanki
- Sudarsanam Babu
- Suman Debnath
- Sunil Subedi
- Tomas Grejtak
- William Peter
- Yiyu Wang
- Yonghao Gui
- Yukinori Yamamoto
- Zhili Feng

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.