Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- Lawrence {Larry} M Anovitz
- James A Haynes
- Ryan Dehoff
- Sumit Bahl
- Ying Yang
- Adam Stevens
- Alice Perrin
- Andres Marquez Rossy
- Andrew G Stack
- Ben Lamm
- Beth L Armstrong
- Brian Post
- Bruce A Pint
- Christopher Fancher
- Dean T Pierce
- Gerry Knapp
- Gordon Robertson
- Jay Reynolds
- Jeff Brookins
- Jovid Rakhmonov
- Juliane Weber
- Meghan Lamm
- Nicholas Richter
- Peeyush Nandwana
- Peng Yang
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Sai Krishna Reddy Adapa
- Sarah Graham
- Shajjad Chowdhury
- Steven J Zinkle
- Sudarsanam Babu
- Sunyong Kwon
- Tim Graening Seibert
- Tolga Aytug
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yanli Wang
- Yukinori Yamamoto
- Yutai Kato

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.