Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Adam M Guss
- Peeyush Nandwana
- Lawrence {Larry} M Anovitz
- Amit Shyam
- Andrzej Nycz
- Blane Fillingim
- Brian Post
- Josh Michener
- Kuntal De
- Lauren Heinrich
- Rangasayee Kannan
- Sudarsanam Babu
- Thomas Feldhausen
- Udaya C Kalluri
- Xiaohan Yang
- Yousub Lee
- Alex Plotkowski
- Alex Walters
- Andres Marquez Rossy
- Andrew G Stack
- Austin Carroll
- Biruk A Feyissa
- Bruce A Pint
- Bryan Lim
- Carrie Eckert
- Chris Masuo
- Christopher Fancher
- Clay Leach
- Debjani Pal
- Gerald Tuskan
- Gordon Robertson
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jay D Huenemann
- Jay Reynolds
- Jeff Brookins
- Jeff Foster
- Joanna Tannous
- John F Cahill
- Juliane Weber
- Kyle Davis
- Liangyu Qian
- Paul Abraham
- Peng Yang
- Peter Wang
- Ryan Dehoff
- Sai Krishna Reddy Adapa
- Serena Chen
- Steven J Zinkle
- Tim Graening Seibert
- Tomas Grejtak
- Vilmos Kertesz
- Vincent Paquit
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yang Liu
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yutai Kato

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.