Filter Results
Related Organization
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Biological and Environmental Systems Science Directorate (23)
Researcher
- Adam M Guss
- Lawrence {Larry} M Anovitz
- Ali Riza Ekti
- Andrzej Nycz
- Biruk A Feyissa
- Carrie Eckert
- Josh Michener
- Kuntal De
- Raymond Borges Hink
- Udaya C Kalluri
- Vilmos Kertesz
- Xiaohan Yang
- Aaron Werth
- Aaron Wilson
- Alex Roschli
- Alex Walters
- Andrew G Stack
- Austin Carroll
- Brian Sanders
- Burak Ozpineci
- Chris Masuo
- Clay Leach
- Daniel Jacobson
- Debjani Pal
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emrullah Aydin
- Erin Webb
- Evin Carter
- Gary Hahn
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaac Sikkema
- Isabelle Snyder
- Isaiah Dishner
- Jay D Huenemann
- Jeff Foster
- Jeremy Malmstead
- Jerry Parks
- Joanna Tannous
- John F Cahill
- Joseph Olatt
- Juliane Weber
- Kitty K Mccracken
- Kunal Mondal
- Kyle Davis
- Liangyu Qian
- Mahim Mathur
- Mengdawn Cheng
- Mingyan Li
- Mostak Mohammad
- Nandhini Ashok
- Nils Stenvig
- Oluwafemi Oyedeji
- Omer Onar
- Oscar Martinez
- Ozgur Alaca
- Paul Abraham
- Paula Cable-Dunlap
- Peng Yang
- Peter L Fuhr
- Sai Krishna Reddy Adapa
- Sam Hollifield
- Serena Chen
- Soydan Ozcan
- Tyler Smith
- Vincent Paquit
- Xianhui Zhao
- Yang Liu
- Yarom Polsky
- Yasemin Kaygusuz

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.