Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Lawrence {Larry} M Anovitz
- Alex Roschli
- Andrew G Stack
- Bruce Moyer
- Debjani Pal
- Erin Webb
- Evin Carter
- Jeffrey Einkauf
- Jennifer M Pyles
- Jeremy Malmstead
- Juliane Weber
- Kitty K Mccracken
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mengdawn Cheng
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Peng Yang
- Sai Krishna Reddy Adapa
- Soydan Ozcan
- Tyler Smith
- Xianhui Zhao

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

An efficient, eco-friendly metal extraction using ultrasonic leaching, ideal for lithium and magnesium recovery from minerals and waste.

An ORNL team has developed a method for screening for an immunoregulatory protein, which includes assessing the sequence of a candidate protein to determine if it is an immunoregulatory protein when at least one plasminogen-apple-nematode (PAN) domain with a consensus sequence