Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- Rama K Vasudevan
- Ryan Dehoff
- Vincent Paquit
- Peter Wang
- Sergei V Kalinin
- Yongtao Liu
- Alex Walters
- Kevin M Roccapriore
- Lawrence {Larry} M Anovitz
- Maxim A Ziatdinov
- Michael Kirka
- Rangasayee Kannan
- Singanallur Venkatakrishnan
- Adam Stevens
- Alex Roschli
- Amir K Ziabari
- Brian Gibson
- Brian Post
- Clay Leach
- Joshua Vaughan
- Kyle Kelley
- Luke Meyer
- Peeyush Nandwana
- Philip Bingham
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Alice Perrin
- Amit Shyam
- Andrew G Stack
- Anton Ievlev
- Arpan Biswas
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Costas Tsouris
- Diana E Hun
- Erin Webb
- Evin Carter
- Gerd Duscher
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- John Potter
- Juliane Weber
- Kitty K Mccracken
- Liam Collins
- Liam White
- Mahshid Ahmadi-Kalinina
- Mark M Root
- Marti Checa Nualart
- Michael Borish
- Neus Domingo Marimon
- Obaid Rahman
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Peng Yang
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Sai Krishna Reddy Adapa
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Soydan Ozcan
- Stephen Jesse
- Sudarsanam Babu
- Sumner Harris
- Tyler Smith
- Utkarsh Pratiush
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.