Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Lawrence {Larry} M Anovitz
- Srikanth Yoginath
- James J Nutaro
- Pratishtha Shukla
- Sudip Seal
- Alex Roschli
- Ali Passian
- Andrew G Stack
- Bryan Lim
- Erin Webb
- Evin Carter
- Harper Jordan
- Jeremy Malmstead
- Joel Asiamah
- Joel Dawson
- Juliane Weber
- Kitty K Mccracken
- Mengdawn Cheng
- Nance Ericson
- Oluwafemi Oyedeji
- Pablo Moriano Salazar
- Paula Cable-Dunlap
- Peeyush Nandwana
- Peng Yang
- Rangasayee Kannan
- Sai Krishna Reddy Adapa
- Soydan Ozcan
- Tomas Grejtak
- Tyler Smith
- Varisara Tansakul
- Xianhui Zhao
- Yiyu Wang

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

An efficient, eco-friendly metal extraction using ultrasonic leaching, ideal for lithium and magnesium recovery from minerals and waste.