Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Lawrence {Larry} M Anovitz
- Ali Riza Ekti
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Raymond Borges Hink
- Scott Smith
- Aaron Werth
- Aaron Wilson
- Akash Jag Prasad
- Andrew G Stack
- Brian Gibson
- Brian Post
- Burak Ozpineci
- Calen Kimmell
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emma Betters
- Emrullah Aydin
- Gary Hahn
- Greg Corson
- Isaac Sikkema
- Isabelle Snyder
- Jesse Heineman
- John Potter
- Joseph Olatt
- Josh B Harbin
- Juliane Weber
- Kunal Mondal
- Mahim Mathur
- Mingyan Li
- Mostak Mohammad
- Nils Stenvig
- Omer Onar
- Oscar Martinez
- Ozgur Alaca
- Peng Yang
- Peter L Fuhr
- Sai Krishna Reddy Adapa
- Sam Hollifield
- Tony L Schmitz
- Vladimir Orlyanchik
- Yarom Polsky

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.