Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Lawrence {Larry} M Anovitz
- Vlastimil Kunc
- Ahmed Hassen
- Andrew G Stack
- Dan Coughlin
- Diana E Hun
- Easwaran Krishnan
- James Manley
- Jamieson Brechtl
- Jim Tobin
- Joe Rendall
- Josh Crabtree
- Juliane Weber
- Karen Cortes Guzman
- Kashif Nawaz
- Kim Sitzlar
- Kuma Sumathipala
- Mengjia Tang
- Merlin Theodore
- Muneeshwaran Murugan
- Peng Yang
- Sai Krishna Reddy Adapa
- Steven Guzorek
- Subhabrata Saha
- Tomonori Saito
- Vipin Kumar
- Zoriana Demchuk

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

An efficient, eco-friendly metal extraction using ultrasonic leaching, ideal for lithium and magnesium recovery from minerals and waste.