Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Peeyush Nandwana
- Edgar Lara-Curzio
- Amit Shyam
- Blane Fillingim
- Brian Post
- Eric Wolfe
- Lauren Heinrich
- Rangasayee Kannan
- Steven J Zinkle
- Sudarsanam Babu
- Thomas Feldhausen
- Yanli Wang
- Ying Yang
- Yousub Lee
- Yutai Kato
- Adam Willoughby
- Alex Plotkowski
- Andres Marquez Rossy
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Bruce A Pint
- Bryan Lim
- Charles Hawkins
- Christopher Fancher
- Frederic Vautard
- Gerald Tuskan
- Gordon Robertson
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jay Reynolds
- Jeff Brookins
- Jeff Foster
- John F Cahill
- Josh Michener
- Liangyu Qian
- Marie Romedenne
- Nidia Gallego
- Paul Abraham
- Peter Wang
- Rishi Pillai
- Ryan Dehoff
- Tim Graening Seibert
- Tomas Grejtak
- Vilmos Kertesz
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiaohan Yang
- Yang Liu
- Yiyu Wang

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The microreactor design addresses the need to understand molten salt-assisted electrochemical processes at a controlled scale, enabling real-time observation of structural changes and kinetics.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.