Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Alex Plotkowski
- Amit Shyam
- Alexey Serov
- James A Haynes
- Jaswinder Sharma
- Sumit Bahl
- Xiang Lyu
- Alice Perrin
- Amit K Naskar
- Andres Marquez Rossy
- Beth L Armstrong
- Gabriel Veith
- Georgios Polyzos
- Gerald Tuskan
- Gerry Knapp
- Holly Humphrey
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Szybist
- Jeff Foster
- John F Cahill
- Jonathan Willocks
- Josh Michener
- Jovid Rakhmonov
- Junbin Choi
- Khryslyn G Araño
- Liangyu Qian
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nicholas Richter
- Nihal Kanbargi
- Paul Abraham
- Peeyush Nandwana
- Ritu Sahore
- Ryan Dehoff
- Sunyong Kwon
- Todd Toops
- Vilmos Kertesz
- Xiaohan Yang
- Yang Liu
- Ying Yang

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.