Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Tomonori Saito
- Sheng Dai
- Radu Custelcean
- Costas Tsouris
- Guang Yang
- Amit K Naskar
- Anisur Rahman
- Jeff Foster
- Parans Paranthaman
- Syed Islam
- Zhenzhen Yang
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Diana E Hun
- Edgar Lara-Curzio
- Gabriel Veith
- Gyoung Gug Jang
- Logan Kearney
- Michelle Lehmann
- Ramesh Bhave
- Benjamin L Doughty
- Benjamin Manard
- Bruce Moyer
- Craig A Bridges
- Frederic Vautard
- Ilja Popovs
- Jaswinder Sharma
- Jeffrey Einkauf
- Joseph Chapman
- Lawrence {Larry} M Anovitz
- Mary Danielson
- Michael Toomey
- Nicholas Peters
- Robert Sacci
- Shannon M Mahurin
- Zoriana Demchuk
- Alexander I Wiechert
- Alexei P Sokolov
- Alexey Serov
- Anees Alnajjar
- Catalin Gainaru
- Cyril Thompson
- Eric Wolfe
- Ethan Self
- Felix L Paulauskas
- Gs Jung
- Hsuan-Hao Lu
- Ilias Belharouak
- Isaiah Dishner
- Joseph Lukens
- Josh Michener
- Li-Qi Qiu
- Liangyu Qian
- Muneer Alshowkan
- Natasha Ghezawi
- Nihal Kanbargi
- Nikki Thiele
- Santa Jansone-Popova
- Saurabh Prakash Pethe
- Sergiy Kalnaus
- Shailesh Dangwal
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Tolga Aytug
- Uday Vaidya
- Vera Bocharova
- Xiang Lyu
- Achutha Tamraparni
- Ahmed Hassen
- Alexandra Moy
- Amanda Musgrove
- Andre O Desjarlais
- Andrew G Stack
- Anna M Mills
- Arit Das
- Ben Lamm
- Brian Williams
- Chanho Kim
- Charles F Weber
- Christopher Bowland
- Christopher Janke
- Corson Cramer
- Diana Stamberga
- Felipe Polo Garzon
- Georgios Polyzos
- Holly Humphrey
- Jayanthi Kumar
- Jennifer M Pyles
- Jiho Seo
- Joanna Mcfarlane
- John F Cahill
- Jonathan Willocks
- Jong K Keum
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Karen Cortes Guzman
- Kaustubh Mungale
- Khryslyn G Araño
- Kuma Sumathipala
- Laetitia H Delmau
- Luke Sadergaski
- Mariam Kiran
- Matthew S Chambers
- Matt Vick
- Md Faizul Islam
- Meghan Lamm
- Mengjia Tang
- Mina Yoon
- Nageswara Rao
- Nancy Dudney
- Nick Galan
- Nick Gregorich
- Nidia Gallego
- Peng Yang
- Phillip Halstenberg
- Robert E Norris Jr
- Sai Krishna Reddy Adapa
- Santanu Roy
- Sargun Singh Rohewal
- Shajjad Chowdhury
- Subhamay Pramanik
- Sumit Gupta
- Tao Hong
- Tao Wang
- Uvinduni Premadasa
- Vandana Rallabandi
- Vlastimil Kunc
- Yingzhong Ma

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

This invention introduces an innovative method for upcycling waste polyalkenamers, such as polybutadiene and acrylonitrile butadiene styrene, into high-performance materials through ring-opening metathesis polymerization (ROMP).

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.