Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Tomonori Saito
- Sheng Dai
- Radu Custelcean
- Costas Tsouris
- Amit K Naskar
- Guang Yang
- Parans Paranthaman
- Syed Islam
- Zhenzhen Yang
- Anisur Rahman
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Edgar Lara-Curzio
- Gyoung Gug Jang
- Jeff Foster
- Logan Kearney
- Ramesh Bhave
- Benjamin Manard
- Craig A Bridges
- Diana E Hun
- Frederic Vautard
- Gabriel Veith
- Ilja Popovs
- Jaswinder Sharma
- Jeffrey Einkauf
- Lawrence {Larry} M Anovitz
- Mary Danielson
- Michael Toomey
- Michelle Lehmann
- Shannon M Mahurin
- William Carter
- Alexander I Wiechert
- Alexei P Sokolov
- Alexey Serov
- Alex Roschli
- Andrzej Nycz
- Benjamin L Doughty
- Brian Post
- Bruce Moyer
- Catalin Gainaru
- Chris Masuo
- Cyril Thompson
- Eric Wolfe
- Ethan Self
- Felix L Paulauskas
- Gs Jung
- Ilias Belharouak
- Li-Qi Qiu
- Luke Meyer
- Natasha Ghezawi
- Nihal Kanbargi
- Nikki Thiele
- Robert Sacci
- Santa Jansone-Popova
- Saurabh Prakash Pethe
- Sergiy Kalnaus
- Shailesh Dangwal
- Tolga Aytug
- Uday Vaidya
- Vera Bocharova
- Xiang Lyu
- Zoriana Demchuk
- Achutha Tamraparni
- Adam Stevens
- Ahmed Hassen
- Alex Walters
- Amanda Musgrove
- Amy Elliott
- Andrew G Stack
- Anees Alnajjar
- Anna M Mills
- Arit Das
- Ben Lamm
- Cameron Adkins
- Chanho Kim
- Charles F Weber
- Christopher Bowland
- Christopher Janke
- Corson Cramer
- Diana Stamberga
- Erin Webb
- Evin Carter
- Felipe Polo Garzon
- Georgios Polyzos
- Holly Humphrey
- Isaiah Dishner
- Isha Bhandari
- Jayanthi Kumar
- Jennifer M Pyles
- Jeremy Malmstead
- Jiho Seo
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Josh Michener
- Joshua Vaughan
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Karen Cortes Guzman
- Kaustubh Mungale
- Khryslyn G Araño
- Kitty K Mccracken
- Kuma Sumathipala
- Laetitia H Delmau
- Liam White
- Liangyu Qian
- Luke Sadergaski
- Matthew S Chambers
- Matt Vick
- Md Faizul Islam
- Meghan Lamm
- Mengjia Tang
- Michael Borish
- Mina Yoon
- Nageswara Rao
- Nancy Dudney
- Nick Galan
- Nick Gregorich
- Nidia Gallego
- Oluwafemi Oyedeji
- Peng Yang
- Peter Wang
- Phillip Halstenberg
- Rangasayee Kannan
- Robert E Norris Jr
- Roger G Miller
- Ryan Dehoff
- Sai Krishna Reddy Adapa
- Santanu Roy
- Sarah Graham
- Sargun Singh Rohewal
- Shajjad Chowdhury
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Soydan Ozcan
- Subhamay Pramanik
- Sudarsanam Babu
- Sumit Gupta
- Tao Hong
- Tao Wang
- Tyler Smith
- Uvinduni Premadasa
- Vandana Rallabandi
- Vlastimil Kunc
- William Peter
- Xianhui Zhao
- Yingzhong Ma
- Yukinori Yamamoto

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

With the ever-increasing problem of plastic waste, several avenues to decrease plastic use and manage waste introduced by disposable plastic products have arisen.

This invention utilizes a salt and an amine containing small molecule or polymer for the synthesis of a bulky anionic salt or containing single-ion conducting polymer electrolyte for the use in Li-ion and beyond Li-ion batteries.

Carbon capture from air typically requires large amounts of solvent and sorbent that are energetically costly to regenerate. It also suffers from degradation, is environmentally unsustainable, and very expensive.