Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Tomonori Saito
- Sheng Dai
- Radu Custelcean
- Costas Tsouris
- Amit K Naskar
- Beth L Armstrong
- Guang Yang
- Parans Paranthaman
- Syed Islam
- Zhenzhen Yang
- Alexey Serov
- Anisur Rahman
- Bishnu Prasad Thapaliya
- Edgar Lara-Curzio
- Gabriel Veith
- Gyoung Gug Jang
- Jaswinder Sharma
- Jeff Foster
- Logan Kearney
- Michelle Lehmann
- Ramesh Bhave
- Xiang Lyu
- Benjamin Manard
- Craig A Bridges
- Diana E Hun
- Frederic Vautard
- Ilja Popovs
- Jeffrey Einkauf
- Lawrence {Larry} M Anovitz
- Mary Danielson
- Michael Toomey
- Shannon M Mahurin
- Alexander I Wiechert
- Alexei P Sokolov
- Benjamin L Doughty
- Bruce Moyer
- Catalin Gainaru
- Cyril Thompson
- Eric Wolfe
- Ethan Self
- Felix L Paulauskas
- Georgios Polyzos
- Gs Jung
- Ilias Belharouak
- Jonathan Willocks
- Khryslyn G Araño
- Li-Qi Qiu
- Meghan Lamm
- Natasha Ghezawi
- Nihal Kanbargi
- Nikki Thiele
- Robert Sacci
- Santa Jansone-Popova
- Saurabh Prakash Pethe
- Sergiy Kalnaus
- Shailesh Dangwal
- Tolga Aytug
- Uday Vaidya
- Vera Bocharova
- Zoriana Demchuk
- Achutha Tamraparni
- Ahmed Hassen
- Amanda Musgrove
- Andrew G Stack
- Anees Alnajjar
- Anna M Mills
- Arit Das
- Ben Lamm
- Chanho Kim
- Charles F Weber
- Christopher Bowland
- Christopher Janke
- Corson Cramer
- Diana Stamberga
- Felipe Polo Garzon
- Holly Humphrey
- Isaiah Dishner
- James Szybist
- Jayanthi Kumar
- Jennifer M Pyles
- Jiho Seo
- Joanna Mcfarlane
- Jong K Keum
- Josh Michener
- Juliane Weber
- Junbin Choi
- Jun Yang
- Junyan Zhang
- Karen Cortes Guzman
- Kaustubh Mungale
- Kuma Sumathipala
- Laetitia H Delmau
- Liangyu Qian
- Luke Sadergaski
- Marm Dixit
- Matthew S Chambers
- Matt Vick
- Md Faizul Islam
- Mengjia Tang
- Mina Yoon
- Nageswara Rao
- Nancy Dudney
- Nick Galan
- Nick Gregorich
- Nidia Gallego
- Peng Yang
- Phillip Halstenberg
- Ritu Sahore
- Robert E Norris Jr
- Sai Krishna Reddy Adapa
- Santanu Roy
- Sargun Singh Rohewal
- Shajjad Chowdhury
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Subhamay Pramanik
- Sumit Gupta
- Tao Hong
- Tao Wang
- Todd Toops
- Uvinduni Premadasa
- Vandana Rallabandi
- Vlastimil Kunc
- Yingzhong Ma

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

With the ever-increasing problem of plastic waste, several avenues to decrease plastic use and manage waste introduced by disposable plastic products have arisen.