Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Venugopal K Varma
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Mahabir Bhandari
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Adam Aaron
- Alexander I Wiechert
- Charles D Ottinger
- Costas Tsouris
- Dave Willis
- Debangshu Mukherjee
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Luke Chapman
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Radu Custelcean
- Ramanan Sankaran
- Rose Montgomery
- Sergey Smolentsev
- Steven J Zinkle
- Sydney Murray III
- Thomas R Muth
- Vasilis Tzoganis
- Vasiliy Morozov
- Vimal Ramanuj
- Wenjun Ge
- Yanli Wang
- Ying Yang
- Yun Liu
- Yutai Kato

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

High and ultra-high vacuum applications require seals that do not allow leaks. O-rings can break down over time, due to aging and exposure to radiation. Metallic seals can damage sealing surfaces, making replacement of the original seal very difficult.

The technology describes an electron beam in a storage ring as a quantum computer.