Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Lawrence {Larry} M Anovitz
- Venugopal K Varma
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Mahabir Bhandari
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Adam Aaron
- Andrew G Stack
- Charles D Ottinger
- Govindarajan Muralidharan
- Juliane Weber
- Peng Yang
- Ramanan Sankaran
- Rose Montgomery
- Sai Krishna Reddy Adapa
- Sergey Smolentsev
- Steven J Zinkle
- Thomas R Muth
- Vimal Ramanuj
- Wenjun Ge
- Yanli Wang
- Ying Yang
- Yutai Kato

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

An efficient, eco-friendly metal extraction using ultrasonic leaching, ideal for lithium and magnesium recovery from minerals and waste.

The interface gasket for building envelope is designed to enhance the installation of windows and other objects into building openings.